Part-II Parametric Signal Modeling and Linear Prediction Theory 2. Discrete Wiener Filtering

Electrical \& Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.
Contact: minwu@umd.edu. Updated: November 5, 2012.

Preliminaries

[Readings: Haykin's 4th Ed. Chapter 2, Hayes Chapter 7]

- Why prefer FIR filters over IIR?
\Rightarrow FIR is inherently stable.
-Why consider complex signals?
- Baseband representation is complex valued for narrow-band messages modulated at a carrier frequency.
- Corresponding filters are also in complex form.
$u[n]=u_{I}[n]+j u_{Q}[n]$
- $u_{l}[n]$: in-phase component
 $u_{Q}[n]$: quadrature component

[^0]
(1) General Problem

(Ref: Hayes §7.1)

Want to process $x[n]$ to minimize the difference between the estimate and the desired signal in some sense:
A major class of estimation (for simplicity \& analytic tractability) is to use linear combinations of $x[n]$ (i.e. via linear filter).
When $x[n]$ and $d[n]$ are from two w.s.s. random processes, we often choose to minimize the mean-square error as the performance index.

$$
\min _{\underline{w}} J \triangleq \mathbb{E}\left[|e[n]|^{2}\right]=\mathbb{E}\left[|d[n]-\hat{d}[n]|^{2}\right]
$$

(2) Categories of Problems under the General Setup

(1) Filtering
(2) Smoothing
(3) Prediction
(9) Deconvolution

Wiener Problems: Filtering \& Smoothing

- Filtering
- The classic problem considered by Wiener
- $x[n]$ is a noisy version of $d[n]: x[n]=d[n]+v[n]$
- The goal is to estimate the true $d[n]$ using a causal filter (i.e., from the current and post values of $x[n]$)
- The causal requirement allows for filtering on the fly
- Smoothing
- Similar to the filtering problem, except the filter is allowed to be non-causal (i.e., all the $x[n]$ data is available)

Wiener Problems: Prediction \& Deconvolution

- Prediction
- The causal filtering problem with $d[n]=x[n+1]$, i.e., the Wiener filter becomes a linear predictor to predict $x[n+1]$ in terms of the linear combination of the previous value $x[n], x[n-1], \ldots$
- Deconvolution
- To estimate $d[n]$ from its filtered (and noisy) version $x[n]=d[n] * g[n]+v[n]$
- If $g[n]$ is also unknown \Rightarrow blind deconvolution.

We may iteratively solve for both unknowns

FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes $\{x[n]\}$ and $\{d[n]\}$:
$W(z)=\sum_{k=0}^{M-1} a_{k} z^{-k}\left(\right.$ where a_{k} can be complex valued)
$\hat{d}[n]=\sum_{k=0}^{M-1} a_{k} x[n-k]=\underline{a}^{T} \underline{x}[n]$ (in vector form)
$\Rightarrow e[n]=d[n]-\hat{d}[n]=d[n]-\sum_{k=0}^{M-1} \underbrace{a_{k} x[n-k]}_{\hat{d}[n]=\underline{a}^{T} \underline{x}[n]}$
By summation-of-scalar:

$$
\begin{aligned}
& J=E\left[|e(x)|^{2}\right]=E\left[e[n] e^{*}[n]\right] \\
& \left.=E\left[|\alpha[n\}|^{2}\right]-E\left[d(n] \sum_{k=0}^{M-1} a_{k}^{+} x^{*}[n-k]\right]-E\left[\alpha^{*}[n] \sum_{k=0}^{\mu-1} a_{k} x(n-k)\right]+E\left[\sum_{k=0}^{M-1} \sum_{k=0}^{M-1} a a_{0}^{*} x(n-k]\right]^{*}[n-k]\right] \\
& =E\left[|d[n]|^{2}\right]-\sum_{k=0}^{M-1} a_{k}^{*} E\left[d[n] x^{*}[n-k]\right]-\sum_{k=0}^{\mu-1} a_{k} E\left[d^{*}[n] x[n-k]\right]+\sum_{k=0}^{\mu-1} \sum_{k=0}^{\mu-1} a_{k} a_{l}^{*} E \underbrace{\sigma}_{\Gamma_{x}(l-k)}[n-k[n-k]]
\end{aligned}
$$

FIR Wiener Filter for w.s.s. processes

In matrix-vector form:

$$
\begin{gathered}
J=\mathbb{E}\left[|d[n]|^{2}\right]-\underline{a}^{H} \underline{p}^{*}-\underline{p}^{T} \underline{a}+\underline{a}^{H} \mathbf{R} \underline{a} \\
\text { where } \underline{x}[n]=\left[\begin{array}{c}
x[n] \\
x[n-1] \\
\vdots \\
x[n-M+1
\end{array}\right], \underline{p}=\left[\begin{array}{c}
\mathbb{E}\left[x[n] d^{*}[n]\right] \\
\vdots \\
\mathbb{E}\left[x[n-M+1] d^{*}[n]\right]
\end{array}\right], \\
\underline{a}=\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{M-1}
\end{array}\right] .
\end{gathered}
$$

- $\mathbb{E}\left[|d[n]|^{2}\right]: \sigma^{2}$ for zero-mean random process
- $\underline{a}^{H} \mathbf{R} \underline{a}$: represent $\mathbb{E}\left[\underline{\underline{a}}{ }^{T} \underline{x}[n] \underline{x}^{H}[n] \underline{a}^{*}\right]=\underline{a}^{T} \mathbf{R} \underline{a}^{*}$

Perfect Square

(1) If \mathbf{R} is positive definite, \mathbf{R}^{-1} exists and is positive definite.
(2) $\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)^{H} \mathbf{R}^{-1}\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)=\left(\underline{a}^{T} \mathbf{R}^{H}-\underline{p}^{H}\right)\left(\underline{a}^{*}-\mathbf{R}^{-1} \underline{p}\right)$

$$
=\underline{a}^{T} \mathbf{R}^{H} \underline{a}^{*}-\underline{p}^{H} \underline{a}^{*}-\underline{a}^{T} \underbrace{\mathbf{R}^{H} \mathbf{R}^{-1}}_{=\mathbb{I}} \underline{p}+\underline{p}^{\bar{H}} \mathbf{R}^{-1} \underline{p}
$$

Thus we can write $J(\underline{a})$ in the form of perfect square:

$$
J(\underline{a})=\underbrace{\mathbb{E}\left[|d[n]|^{2}\right]-\underline{p}^{H} \mathbf{R}^{-1} \underline{p}}_{\text {Not a function of } \underline{a} \text {; Represent } J_{\text {min }} .}+\underbrace{\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)^{H} \mathbf{R}^{-1}\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)}_{>0 \text { except being zero if } \mathbf{R a}^{*}-\underline{p}=0}
$$

Perfect Square

$J(\underline{a})$ represents the error performance surface: convex and has unique minimum at $\mathbf{R a}^{*}=\underline{p}$

Thus the necessary and sufficient condition for determining the optimal linear estimator (linear filter) that minimizes MSE is

$$
\mathbf{R} \underline{\mathbf{a}}^{*}-\underline{p}=0 \Rightarrow \mathbf{R} \underline{a}^{*}=\underline{p}
$$

This equation is known as the Normal Equation. A FIR filter with such coefficients is called a FIR Wiener filter.

Perfect Square

$$
\mathbf{R} \underline{a}^{*}=\underline{p} \quad \therefore \underline{a}_{\mathrm{opt}}^{*}=\mathbf{R}^{-1} \underline{p} \text { if } \mathbf{R} \text { is not singular }
$$ (which often holds due to noise)

When $\{x[n]\}$ and $\{d[n]\}$ are jointly w.s.s.
(i.e., crosscorrelation depends only on time difference)

This is also known as the Wiener-Hopf equation (the discrete-time counterpart of the continuous Wiener-Hopf integral equations)

Principle of Orthogonality

Note: to minimize a real-valued func. $f\left(z, z^{*}\right)$ that's analytic (differentiable everywhere) in z and z^{*}, set the derivative of f w.r.t. either z or z^{*} to zero.

- Necessary condition for minimum $J(\underline{a}):($ nece.\&suff. for convex J)

$$
\begin{aligned}
& \frac{\partial}{\partial a_{k}^{*}} J=0 \text { for } k=0,1, \ldots, M-1 \\
& \begin{aligned}
\Rightarrow \frac{\partial}{\partial a_{k}^{*}} \mathbb{E}\left[e[n] e^{*}[n]\right] & =\mathbb{E}\left[e[n] \frac{\partial}{\partial a_{k}^{*}}\left(d^{*}[n]-\sum_{j=0}^{M-1} a_{j}^{*} x^{*}[n-j]\right)\right] \\
& =\mathbb{E}\left[e[n] \cdot\left(-x^{*}[n-k]\right)\right]=0
\end{aligned}
\end{aligned}
$$

Principal of Orthogonality

$$
\mathbb{E}\left[e_{\text {opt }}[n] x^{*}[n-k]\right]=0 \text { for } k=0, \ldots, M-1
$$

The optimal error signal $e[n]$ and each of the M samples of $x[n]$ that participated in the filtering are statistically uncorrelated (i.e., orthogonal in a statistical sense)
2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Principle of Orthogonality: Geometric View

Geonnetric

any linear combination
of $x[n] \ldots x[n-\mu+1]$; which includes the optimal ${\underset{d}{\text { opt }}}^{[n]}$

Analogy:
r.v. \Rightarrow vector;
$\mathrm{E}(\mathrm{XY}) \Rightarrow$ inner product of vectors
\Rightarrow The optimal $\hat{d}[n]$ is the projection of $d[n]$ onto the subspace spanned by $\{x[n], \ldots, x[n-M+1]\}$ in a statistical sense.

The vector form: $\quad \mathbb{E}\left[\underline{x}[n] e_{\text {opt }}^{*}[n]\right]=\underline{0}$.
This is true for any linear combination of $\underline{x}[n]$ and for FIR \& IIR:

$$
\mathbb{E}\left[\hat{d}_{\text {opt }}[n] e_{\text {opt }}[n]\right]=0
$$

Minimum Mean Square Error

Recall the perfect square form of J :

$$
\begin{aligned}
& J(\underline{a})=\underbrace{\mathbb{E}\left[|d[n]|^{2}\right]-\underline{p}^{H} \mathbf{R}^{-1} \underline{p}}+\underbrace{\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)^{H} \mathbf{R}^{-1}\left(\mathbf{R} \underline{a}^{*}-\underline{p}\right)} \\
& \therefore J_{\min }=\sigma_{d}^{2}-\underline{a}_{o}^{H} \underline{p}^{*}=\sigma_{d}^{2}-\underline{p}^{H} \mathbf{R}^{-1} \underline{p}
\end{aligned}
$$

Also recall $d[n]=\hat{d}_{\text {opt }}[n]+e_{\text {opt }}[n]$. Since $\hat{d}_{\text {opt }}[n]$ and $e_{\text {opt }}[n]$ are uncorrelated by the principle of orthogonality, the variance is

$$
\sigma_{d}^{2}=\operatorname{Var}\left(\hat{d}_{\mathrm{opt}}[n]\right)+J_{\mathrm{min}}
$$

$\therefore \operatorname{Var}\left(\hat{d}_{\mathrm{opt}}[n]\right)=\underline{p}^{H} \mathbf{R}^{-1} \underline{p}$
$=\underline{a}_{0}^{H} \underline{p}^{*}=\underline{p}^{H} \underline{a}_{0}^{*}=\underline{p}^{T} \underline{a}_{0} \quad$ real and scalar

Example and Exercise

- What kind of process is $\{x[n]\}$?
- What is the correlation matrix of the channel output?
- What is the cross-correlation vector?
- $w_{1}=$? $\quad w_{2}=$? $J_{\text {min }}=$?

Detailed Derivations

Another Perspective (in terms of the gradient)

Theorem: If $f\left(\underline{z}, \underline{z}^{*}\right)$ is a real-valued function of complex vectors \underline{z} and \underline{z}^{*}, then the vector pointing in the direction of the maximum rate of the change of f is $\nabla_{z^{*}} f\left(\underline{z}, \underline{z}^{*}\right)$, which is a vector of the derivative of $f()$ w.r.t. each entry in the vector \underline{z}^{*}.

Corollary: Stationary points of $f\left(\underline{z}, \underline{z}^{*}\right)$ are the solutions to $\nabla \underline{z}^{*} f\left(\underline{z}, \underline{z}^{*}\right)=0$.

Complex gradient of a complex function:

	$\underline{a}^{H} \underline{z}$	$\underline{z}^{H} \underline{a}$	$\underline{z}^{H} A \underline{z}$
$\nabla \underline{z}$	\underline{a}^{*}	0	$A^{T} \underline{z}^{*}=(A \underline{z})^{*}$
$\nabla \underline{z}^{*}$	0	\underline{a}	$A \underline{z}$

Using the above table, we have $\nabla \underline{a}^{*} J=-\underline{p}^{*}+\mathbf{R}^{T} \underline{a}$.
For optimal solution: $\nabla_{\underline{a}^{*}} J=\frac{\partial}{\partial \mathbf{a}^{*}} J=0$
$\Rightarrow \mathbf{R}^{T} \underline{a}=\underline{p}^{*}$, or $\mathbf{R} \underline{a}^{*}=\underline{p}$, the Normal Equation. $\therefore \underline{a}_{\mathrm{opt}}^{*}=\mathbf{R}^{-1} \underline{p}$
(Review on matrix \& optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)

Review: differentiating complex functions and vectors

Recall: $f(z)$ is analytic (i.e-differentialable every where) on region D if $f(z)=u(x, y)+i v(x, y)$ is continuous and satisfy Cauchy - Riemann condition $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$.

$$
\text { (2) e.g. } \begin{aligned}
f_{1}(z)=z z^{*}=|z|^{2}=\left(x^{2}+y^{2}\right)+i \times 0 \\
f_{2}(z)=z^{*}=x-i y \\
\Rightarrow \text { Does not satisfy Cauchy-Riemann. }
\end{aligned}
$$

Review: differentiating complex functions and vectors
unlike
the \leftarrow Note: $f(z)=|z|^{2}$ has unique minimum at $z=0$, but not value differentiable from complex analysis (any func. that depends on z^{*} is not differentiable) oprimiz. case,
$d f(x)$, We can either minimize $f(x, y)$ wat $x \& y$ where $z=x+i y$, or $\frac{d f(x)}{d x}=0$. treat z and z^{*} as indep. variables and minimize $f\left(z, z^{*}\right)$ w.u.t. both z and δ^{*} : i.e. $\frac{\partial f}{\partial z}=0$ and $\frac{\partial f}{\partial \delta^{*}}=0$

Minimizing a real-valued funce of z and z^{*} (and the func. is analytic w.r.t. both z and z^{*}) is somewhat easier: the optimal potuts may be found by setting the derivative of $f\left(z, z^{*}\right)$ w.r.t. either z or $z^{* *}$ equal to zero and solve for z.
egg. $f\left(z, z^{*}\right)=|z|^{2}=z \cdot z^{*}$. Sufficient to have $\frac{\partial t}{\partial z^{*}}=z=0$.

Differentiating complex functions: More details

$$
\begin{aligned}
& z=x+i y \quad f(z)=u(x, y)+i v(x, y) \\
& \text { Note: } x=\frac{1}{2}\left(z+z^{*}\right) \\
& y=\frac{1}{2 i}\left(z-z^{*}\right) \quad \Rightarrow\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
\frac{\partial f}{\partial y}=\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{\partial f}{\partial z} \xlongequal{\text { def }} \frac{1}{2}\left[\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}(-i)\right] \\
\frac{\partial f}{\partial z^{*}}=\frac{\text { def }}{=} \frac{1}{2}\left[\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} \cdot i\right]
\end{array} \quad \frac{\partial f}{\partial z}=\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial z}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial z}\right.
\end{aligned}
$$

For real-valued $f(z)$: i.e. $f(z)=u(x, y)$.
we hove: (1) $\frac{\partial f}{\partial z}=\left(\frac{\partial f}{\partial z^{*}}\right)^{*}$; (2) Gradient $\nabla u=\left[\begin{array}{l}\frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y}\end{array}\right] \Rightarrow \begin{aligned} & \text { written as complex\# } \\ & \frac{\partial u}{\partial x}+i \frac{\partial u}{\partial y}\end{aligned}=\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}$
E.g. (1) if $f(z)=z=x+i y$

$$
\frac{\partial f}{\partial z^{*}} \stackrel{\text { def }}{=} \frac{1}{2}\left[\frac{\partial t}{\partial x}+i \frac{\partial f}{\partial y}\right]=\frac{1}{2}[1+i \cdot i]=0 ; \quad \frac{\partial f}{\partial z} \stackrel{\text { def }}{=} \frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial t}{\partial y}\right)=\frac{1}{2}(1-i \cdot i)=1
$$

E.g. (2) $f(z)=|z|^{2}$.

Let $A \stackrel{\text { def }}{=} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\frac{(z+\Delta z)\left(z^{*}+(\Delta z)^{*}\right)-z \cdot z^{*}}{\Delta z}=z^{*}+(\Delta z)^{*}+z \frac{(\Delta z)^{*}}{\Delta z}$
for $\Delta z=\Delta x+0 . i: \ell_{\Delta x \rightarrow 0} \frac{\Delta z)^{*}}{\Delta z}=1 \Rightarrow A \rightarrow z^{*}+z \Rightarrow$ A converges d efferent results for $\Delta z=0+\Delta y \cdot i: \frac{l_{1} \rightarrow 0}{\Delta y \rightarrow 0} \frac{\Delta z z^{*}}{\Delta z}=-1 \Rightarrow A \rightarrow z^{*}-z \quad \begin{aligned} & \text { for different direct } \\ & \text { except for } z=0\end{aligned}$
\therefore the limit doesst exist, except tor $z=0$ (and thus not differentiable)

[^0]: the two parts can be amplitude modulated by $\cos 2 \pi f_{c} t$ and $\sin 2 \pi f_{c} t$.

