Part-II Parametric Signal Modeling and Linear Prediction Theory2. Discrete Wiener Filtering

Electrical & Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.

Contact: minwu@umd.edu. Updated: November 5, 2012.

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Preliminaries

[Readings: Haykin's 4th Ed. Chapter 2, Hayes Chapter 7]

• Why prefer FIR filters over IIR?

 \Rightarrow FIR is inherently stable.

- Why consider complex signals?
 - Baseband representation is complex valued for narrow-band messages modulated at a carrier frequency.
 - Corresponding filters are also in complex form.
- $u[n] = u_I[n] + j u_Q[n]$
- $u_l[n]$: in-phase component • $u_Q[n]$: quadrature component the two parts can be amplitude

the two parts can be amplitude modulated by $\cos 2\pi f_c t$ and $\sin 2\pi f_c t$.

2.0 Preliminaries2.1 Background2.2 FIR Wiener Filter for w.s.s. Processes2.3 Example

(1) General Problem

(Ref: Hayes §7.1)

Want to process x[n] to <u>minimize</u> the difference between the estimate and the desired signal in some sense:

A major class of estimation (for simplicity & analytic tractability) is to use linear combinations of x[n] (i.e. via linear filter).

When x[n] and d[n] are from two <u>w.s.s.</u> random processes, we often choose to minimize the mean-square error as the performance index.

$$\min_{\underline{w}} J \triangleq \mathbb{E}\left[|e[n]|^2\right] = \mathbb{E}\left[|d[n] - \hat{d}[n]|^2\right]$$

2.0 Preliminaries2.1 Background2.2 FIR Wiener Filter for w.s.s. Processes2.3 Example

(2) Categories of Problems under the General Setup

- Filtering
- Smoothing
- In Prediction
- Occonvolution

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Wiener Problems: Filtering & Smoothing

- Filtering
 - The classic problem considered by Wiener
 - x[n] is a noisy version of d[n]: x[n] = d[n] + v[n]
 - The goal is to estimate the true d[n] using a causal filter (i.e., from the current and post values of x[n])
 - The causal requirement allows for filtering on the fly
- Smoothing
 - Similar to the filtering problem, except the filter is allowed to be non-causal (i.e., all the *x*[*n*] data is available)

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Wiener Problems: Prediction & Deconvolution

- Prediction
 - The causal filtering problem with d[n] = x[n+1],
 - i.e., the Wiener filter becomes a linear predictor to predict x[n+1] in terms of the linear combination of the previous value $x[n], x[n-1], \ldots$
- Deconvolution
 - To estimate d[n] from its filtered (and noisy) version x[n] = d[n] * g[n] + v[n]
 - If g[n] is also unknown ⇒ blind deconvolution.
 We may iteratively solve for both unknowns

2.0 Preliminaries
2.1 Background
2.2 FIR Wiener Filter for w.s.s. Processes
2.3 Example

FIR Wiener Filter for w.s.s. processes

Design an FIR Wiener filter for jointly w.s.s. processes $\{x[n]\}$ and $\{d[n]\}$: $W(z) = \sum_{k=0}^{M-1} a_k z^{-k}$ (where a_k can be complex valued) $\hat{d}[n] = \sum_{k=0}^{M-1} a_k x[n-k] = \underline{a}^T \underline{x}[n]$ (in vector form) $\Rightarrow e[n] = d[n] - \hat{d}[n] = d[n] - \sum_{k=0}^{M-1} \underbrace{a_k x[n-k]}_{\hat{d}[n] = \underline{a}^T \underline{x}[n]}$

By summation-of-scalar: $J = E[|e(n)|^{2}] = E[e(n) e^{x}(n)]$ $= E[|d(n)|^{2}] - E[d(n) \sum_{k=0}^{n} a_{k} x^{*}(n-k)] - E[d^{*}(n) \sum_{k=0}^{n-1} a_{k} x(n-k)] + E[\sum_{k=0}^{n-1} a_{k} a_{k} a_{k}^{*} x(n-k) x(n-k)]$ $= E[(d(n)|^{2}] - \sum_{k=0}^{n-1} a_{k}^{*} E[d(n) x^{*}(n-k)] - \sum_{k=0}^{n-1} a_{k} E[d^{*}(n) x(n-k)] + \sum_{k=0}^{n-1} a_{k} a_{k}^{*} E[x(n+k) x(n-k)]$ $= E[(d(n)|^{2}] - \sum_{k=0}^{n-1} a_{k}^{*} E[d(n) x^{*}(n-k)] - \sum_{k=0}^{n-1} a_{k} E[d^{*}(n) x(n-k)] + \sum_{k=0}^{n-1} a_{k} a_{k}^{*} E[x(n+k) x(n-k)]$

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

FIR Wiener Filter for w.s.s. processes

In matrix-vector form:

$$J = \mathbb{E}\left[|d[n]|^{2}\right] - \underline{a}^{H}\underline{p}^{*} - \underline{p}^{T}\underline{a} + \underline{a}^{H}\mathbf{R}\underline{a}$$

where $\underline{x}[n] = \begin{bmatrix} x[n] \\ x[n-1] \\ \vdots \\ x[n-M+1] \end{bmatrix}$, $\underline{p} = \begin{bmatrix} \mathbb{E}[x[n]d^{*}[n]] \\ \vdots \\ \mathbb{E}[x[n-M+1]d^{*}[n]] \end{bmatrix}$,
 $\underline{a} = \begin{bmatrix} a_{0} \\ \vdots \\ a_{M-1} \end{bmatrix}$.

- $\mathbb{E}\left[|d[n]|^2\right]$: σ^2 for zero-mean random process
- $\underline{a}^{H}\mathbf{R}\underline{a}$: represent $\mathbb{E}\left[\underline{a}^{T}\underline{x}[n]\underline{x}^{H}[n]\underline{a}^{*}\right] = \underline{a}^{T}\mathbf{R}\underline{a}^{*}$

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Perfect Square

() If **R** is positive definite, \mathbf{R}^{-1} exists and is positive definite.

$$(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} (\mathbf{R}\underline{a}^* - \underline{p}) = (\underline{a}^T \mathbf{R}^H - \underline{p}^H) (\underline{a}^* - \mathbf{R}^{-1}\underline{p}) = \underline{a}^T \mathbf{R}^H \underline{a}^* - \underline{p}^H \underline{a}^* - \underline{a}^T \underbrace{\mathbf{R}^H \mathbf{R}^{-1}}_{=\mathbb{I}} \underline{p} + \underline{p}^H \mathbf{R}^{-1} \underline{p}$$

Thus we can write $J(\underline{a})$ in the form of perfect square:

$$J(\underline{a}) = \underbrace{\mathbb{E}\left[|d[n]|^2\right] - \underline{p}^H \mathbf{R}^{-1} \underline{p}}_{\text{Not a function of }\underline{a}; \text{ Represent } J_{\min}.} + \underbrace{(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} (\mathbf{R}\underline{a}^* - \underline{p})}_{>0 \text{ except being zero if } \mathbf{R}\underline{a}^* - \underline{p}=0}$$

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Perfect Square

 $J(\underline{a})$ represents the error performance surface: convex and has unique minimum at $\mathbf{R}\underline{a}^* = \underline{p}$

Ja

Thus the necessary and sufficient condition for determining the optimal linear estimator (linear filter) that minimizes MSE is

$$\mathbf{R}\underline{a}^* - \underline{p} = 0 \Rightarrow \mathbf{R}\underline{a}^* = \underline{p}$$

This equation is known as the **Normal Equation**. A FIR filter with such coefficients is called a **FIR Wiener filter**.

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Perfect Square

$$\mathbf{R}\underline{a}^* = \underline{p} \quad \therefore \underline{a}^*_{opt} = \mathbf{R}^{-1}\underline{p} \text{ if } \mathbf{R} \text{ is not singular}$$
(which often holds due to noise)

When $\{x[n]\}$ and $\{d[n]\}$ are jointly w.s.s. (i.e., crosscorrelation depends only on time difference)

This is also known as the Wiener-Hopf equation (the discrete-time counterpart of the continuous Wiener-Hopf integral equations)

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Principle of Orthogonality

Note: to minimize a real-valued func. $f(z, z^*)$ that's analytic (differentiable everywhere) in z and z^* , set the derivative of f w.r.t. either z or z^* to zero.

• Necessary condition for minimum $J(\underline{a})$: (nece.&suff. for convex J) $\frac{\partial}{\partial a_k^*}J = 0$ for $k = 0, 1, \dots, M - 1$. $\Rightarrow \frac{\partial}{\partial a_k^*}\mathbb{E}\left[e[n]e^*[n]\right] = \mathbb{E}\left[e[n]\frac{\partial}{\partial a_k^*}(d^*[n] - \sum_{j=0}^{M-1} a_j^*x^*[n-j])\right]$ $= \mathbb{E}\left[e[n] \cdot (-x^*[n-k])\right] = 0$

Principal of Orthogonality

$$\mathbb{E}\left[e_{\text{opt}}[n]x^*[n-k]\right] = 0 \text{ for } k = 0, \dots, M-1.$$

The optimal error signal e[n] and each of the M samples of x[n] that participated in the filtering are statistically uncorrelated (i.e., orthogonal in a statistical sense)

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Principle of Orthogonality: Geometric View

 $\begin{array}{l} \mbox{Analogy:} \\ \mbox{r.v.} \ \Rightarrow \mbox{vector;} \\ \mbox{E}(XY) \ \Rightarrow \mbox{inner product of vectors} \end{array}$

⇒ The optimal $\hat{d}[n]$ is the projection of d[n] onto the subspace spanned by $\{x[n], ..., x[n - M + 1]\}$ in a statistical sense.

The vector form: $\mathbb{E}\left[\underline{x}[n]e_{opt}^{*}[n]\right] = \underline{0}.$

This is true for any linear combination of $\underline{x}[n]$ and for FIR & IIR:

$$\mathbb{E}\left[\hat{d}_{\rm opt}[n]e_{\rm opt}[n]\right] = 0$$

2.0 Preliminaries 2.1 Background 2.2 FIR Wiener Filter for w.s.s. Processes 2.3 Example

Minimum Mean Square Error

Recall the perfect square form of *J*:

$$J(\underline{a}) = \underbrace{\mathbb{E}\left[|d[n]|^2\right] - \underline{p}^H \mathbf{R}^{-1} \underline{p}}_{d} + \underbrace{(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} (\mathbf{R}\underline{a}^* - \underline{p})}_{d} + \underbrace{(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} (\mathbf{R}\underline{a}^* - \underline{p})}_{d} + \underbrace{(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} (\mathbf{R}\underline{a}^* - \underline{p})}_{d} + \underbrace{(\mathbf{R}\underline{a}^* - \underline{p})^H \mathbf{R}^{-1} \underline{p}}_{d}$$
Also recall $d[n] = \hat{d}_{opt}[n] + e_{opt}[n]$. Since $\hat{d}_{opt}[n]$ and $e_{opt}[n]$ are uncorrelated by the principle of orthogonality, the variance is $\sigma_d^2 = \operatorname{Var}(\hat{d}_{opt}[n]) + J_{min}$
 $\therefore \operatorname{Var}(\hat{d}_{opt}[n]) = \underline{p}^H \mathbf{R}^{-1} \underline{p}$

$$= \underline{a}_0^H \underline{p}^* = \underline{p}^H \underline{a}_o^* = \underline{p}^T \underline{a}_o \quad \text{real and scalar}$$

- 2.0 Preliminaries
- 2.1 Background
- 2.2 FIR Wiener Filter for w.s.s. Processes
- 2.3 Example

Example and Exercise

- What kind of process is {x[n]}?
- What is the correlation matrix of the channel output?
- What is the cross-correlation vector?

•
$$w_1 = ?$$
 $w_2 = ?$ $J_{\min} = ?$

Detailed Derivations

Another Perspective (in terms of the gradient)

Theorem: If $f(\underline{z}, \underline{z}^*)$ is a **real-valued** function of complex vectors \underline{z} and \underline{z}^* , then the vector pointing in the direction of the maximum rate of the change of f is $\nabla_{\underline{z}^*} f(\underline{z}, \underline{z}^*)$, which is a vector of the derivative of f() w.r.t. each entry in the vector \underline{z}^* .

Corollary: Stationary points of $f(\underline{z}, \underline{z}^*)$ are the solutions to $\nabla_{\underline{z}^*} f(\underline{z}, \underline{z}^*) = 0$.

Complex gradient of a complex function: $\begin{array}{c|c}
\underline{a}^{H}\underline{z} & \underline{z}^{H}\underline{a} & \underline{z}^{H}A\underline{z} \\
\hline & & \\
\nabla_{\underline{z}} & \underline{a}^{*} & 0 & A^{T}\underline{z}^{*} = (A\underline{z})^{*} \\
\hline & & \\
\nabla_{z^{*}} & 0 & a & Az
\end{array}$

Using the above table, we have $\bigtriangledown_{\underline{a}^*} J = -\underline{p}^* + \mathbf{R}^T \underline{a}$.

For optimal solution: $\bigtriangledown_{\underline{a}^*} J = \frac{\partial}{\partial \underline{a}^*} J = 0$ $\Rightarrow \mathbf{R}^T \underline{a} = \underline{p}^*$, or $\mathbf{R} \underline{a}^* = \underline{p}$, the Normal Equation. $\therefore \underline{a}^*_{opt} = \mathbf{R}^{-1} \underline{p}$

(Review on matrix & optimization: Hayes 2.3; Haykins(4th) Appendix A,B,C)

Review: differentiating complex functions and vectors

(1) Differentiableat do Need to converge
$$\begin{array}{c} (1) \quad \underbrace{f(\mathcal{F}_{0}(d)) - f(\mathcal{F}_{0})}{\mathcal{F}_{0}(d)} \quad exist \implies in all directions \\ \mathcal{F}_{0} = \mathcal{F}_{0} \quad \mathcal{F}_{0} \implies in all directions \\ \mathcal{F}_{0} = \mathcal{F}_{0} \quad \mathcal{F}_{0} \implies in all directions \\ \mathcal{F}_{0} = \mathcal{F}_{0} \implies is analytic (i.e. differentiable every where) on Negion D if \\ f(\mathcal{F}) = W(X, Y) + i \mathcal{V}(X, Y) \quad is conthinuous and satisfy (auchy - Riemann \\ Ondition \qquad \underbrace{\mathcal{F}_{0}}_{\mathcal{F}_{0}} = \underbrace{\mathcal{F}_{0}}_{\mathcal{F}_{0}} \stackrel{\mathcal{F}_{0}}{\mathcal{F}_{0}} = -\frac{\mathcal{F}_{0}}{\mathcal{F}_{0}} \\ \end{array}$$

$$\begin{array}{c} (2) \quad e.g. \quad f_{i}(\mathcal{F}) = \mathcal{F}_{0}^{*} = |\mathcal{F}|^{2} = (\chi^{2} + \chi^{2}) + i \times 0 \\ \qquad f_{1}(\mathcal{F}) = \mathcal{F}_{0}^{*} = \chi - i \chi \\ \implies \text{DOES NOT S atisfy Cauchy - Riemann.} \end{array}$$

Review: differentiating complex functions and vectors

unlike
the ← Note:
$$f(\delta) = |\delta|^{\perp}$$
 has unique minimum at $\beta = 0$, but not
term ← Note: $f(\delta) = |\delta|^{\perp}$ has unique minimum at $\beta = 0$, but not
totale
differentiable-from complex analysis (any func. that depends on β^{+} is not differentiable)
optimis.
Dotation of the state of the

Differentiating complex functions: More details

20 / 24